MATH3210 - SPRING 2024 - SECTION 004

EXAM 2 - REVIEW SHEET

How to use this review sheet

On the exam or problems, you may use any of the definitions and theorems stated on the review sheet, *unless you are explicitly asked to prove a theorem listed here*. Any unnamed theorem you may use without citing. If you use a named theorem, cite that theorem by name when invoking its conclusions. Please don't hesitate to ask questions. I've proofread this, but typos may still lurk!

1. Continuity

Definition 1. If $D \subset \mathbb{R}$ is a domain (usually an interval, ray, or all of \mathbb{R}), and $f : D \to \mathbb{R}$ is a function, then:

- f is continuous at $x \in D$ if and only if for every $\varepsilon > 0$, there exists some $\delta > 0$ such that for every $y \in D$ such that $|y - x| < \delta$, $|f(y) - f(x)| < \varepsilon$,
- f is (pointwise) continuous (or just continuous) if and only if it is continuous at every $x \in D$, and
- f is uniformly continuous if and only if for every $\varepsilon > 0$, there exists some $\delta > 0$ such that for every $x, y \in D$ such that $|y x| < \delta$, $|f(y) f(x)| < \varepsilon$.

Theorem 1 (Extreme Value Theorem). If I = [a, b] is closed and bounded, and $f : I \to \mathbb{R}$ is continuous, then f is bounded on I, and f achieves its minimum and maximum values (ie, there exists $c \in I$ such that $f(c) = \sup f(x)$, and similarly for the minimum value).

Theorem 2 (Intermediate Value Theorem). If I = [a, b] is closed and bounded, $f : I \to \mathbb{R}$ is continuous, and y lies between f(a) and f(b), then there exists $c \in [a, b]$ such that f(c) = y.

Theorem 3. If I = [a, b] and $f : I \to \mathbb{R}$ is strictly increasing and continuous, then f(I) = [c, d] is a closed interval and there exists a continuous inverse $g : [c, d] \to \mathbb{R}$.

Theorem 4. If I = [a, b] is a closed interval, any continuous function on I is uniformly continuous.

Theorem 5. If $f : D \to \mathbb{R}$ is a uniformly continuous function on a domain D, and $\{x_n\}$ is a Cauchy sequence in D, then $\{f(x_n)\}$ is a Cauchy sequence.

Definition 2. Let I be an interval with endpoints a and b, each of which may or may not belong to I. Then \overline{I} , the *closure of* I, is the closed interval [a, b]. If $f: I \to \mathbb{R}$ is a function, an *extension* of f to \overline{I} is a function $F: \overline{I} \to \mathbb{R}$ such that for all $x \in I$, F(x) = f(x).

Theorem 6. If f is a continuous function on an interval I, then f is uniformly continuous on I if and only if it has a continuous extension to \overline{I} .

EXAM 2 - REVIEW SHEET

2. Limits

Definition 3. Let I be an interval, ray or the real line and $a \in I$ be an interior point.

- We say that $\lim f(x) = L$ if and only if for every $\varepsilon > 0$, there exists some $\delta > 0$ such that if $0 < |x - a| < \delta$, then $|f(x) - L| < \varepsilon$. • If a is an interior point, right-hand endpoint, or ∞ , we say that $\lim_{x \to a^-} f(x) = L$ if and only
- if for every $\varepsilon > 0$, there exists some m < a such that if m < x < a, $|f(x) L| < \varepsilon$. If a is an interior point, left-hand endpoint, or $-\infty$, we say that $\lim_{x \to a^+} f(x) = L$ if and only if for every $\varepsilon > 0$, there exists some m > a such that if a < x < m, $|f(x) - L| < \varepsilon$.

Theorem 7. Let I be an interval and $a \in I$ be an interior point. Then

$$\lim_{x \to a} f(x) = L \text{ if and only if } \lim_{x \to a^+} f(x) = L = \lim_{x \to a^-} f(x)$$

Theorem 8 (Limit Arithmetic Theorem). Assume all limits involved exist as real numbers.¹

- (a) If f(x) is the constant function with value c, then $\lim f(x) = c$
- (b) $\lim_{x \to a} cf(x) = c \lim_{x \to a} f(x)$ (c) $\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$ (d) $\lim_{x \to a} f(x)g(x) = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$ (e) $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, \text{ assuming that } \lim_{x \to a} g(x) \text{ exists.}$

3. Derivatives

Definition 4. If $f: I \to \mathbb{R}$ is a function defined on an interval, and $a \in I$ is an interior point, we say that f is differentiable at a if

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

exists. We denote the limit by f'(a). We say that f is differentiable on I if it is differentiable at every interior point of I.

Theorem 9. If f is differentiable at a, then it is continuous at a.

Theorem 10 (Derivative arithmetic theorem). Assume that f and g are functions which are differentiable at a. Then

$$\begin{array}{l} (a) \ (cf)'(a) = cf'(a) \\ (b) \ (f+g)'(a) = f'(a) + g'(a) \\ (c) \ (fg)'(a) = f'(a)g(a) + f(a)g'(a) \\ (d) \ \left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{g(a)^2}, \ assuming \ that \ g(a) \neq 0 \end{array}$$

Theorem 11 (The Chain Rule). If g is differentiable at a, and f is differentiable at b = g(a), then $f \circ g$ is differentiable at a, and

$$(f \circ g)'(a) = f'(g(a)) \cdot g'(a).$$

Theorem 12. If $f: I \to \mathbb{R}$ is differentiable and f'(x) > 0 on I, then the inverse function g of f (provided by Theorem 3) is differentiable, and

$$g'(y) = \frac{1}{f'(g(y))}$$

¹Note that this is a nontrivial assumption! You need all limits to exist to apply this theorem.

Theorem 13. If f is a continuous function on a closed bounded interval, f achieves its maximum value at interior point c, and f is differentiable at c, then f'(c) = 0.

3.1. The mean value theorem and corollaries.

Theorem 14 (Mean Value Theorem). If $f : [a, b] \to \mathbb{R}$ is continuous and differentiable on its interior points, then there exists some $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Theorem 15. If f is a continuous function defined on an interval I, f is constant if and only if f'(x) = 0 for every interior point $x \in I$.

Corollary 16. If f and g are differentiable functions on an interval (a,b), and f'(x) = g'(x) for all $x \in (a,b)$, then there exists some $c \in \mathbb{R}$ such that f(x) = g(x) + c for all $x \in (a,b)$.

Theorem 17. Let f be differentiable on an open interval, ray or all of \mathbb{R} . If f'(x) is bounded above, then f is uniformly continuous.

3.2. L'Hopital's rule.

Theorem 18 (Cauchy Mean Value Theorem). Let $f, g : [a, b] \to \mathbb{R}$ be continuous functions which are differentiable at interior points. If $g'(x) \neq 0$ for all $x \in (a, b)$, then there exists $c \in (a, b)$ such that

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(c)}{g'(c)}$$

Theorem 19 (L'Hopital's rule, interior point version). Let f and g be differentiable functions on an interval I, and $a \in I$ be such that f(a) = g(a) = 0, but $g(x) \neq 0$ for any other $x \in I$. Then if $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ exists,

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

Theorem 20 (L'Hopital's rule, right-hand version). Let f and g be differentiable functions on an open interval, ray, or all of \mathbb{R} . Let b denote the right hand endpoint of the interval, or ∞ in the case of a right-facing ray or \mathbb{R} . Assume that g(x) and g'(x) are both nonzero at every point of its domain, but either

$$\lim_{x \to b^{-}} f(x) = \lim_{x \to b^{-}} g(x) = 0 \quad or \quad \lim_{x \to b^{-}} f(x) = \lim_{x \to b^{-}} g(x) = \infty.$$

Then when
$$\lim_{x \to b^{-}} \frac{f'(x)}{g'(x)} \text{ exists,}$$

$$\lim_{x \to b^{-}} \frac{f(x)}{g(x)} = \lim_{x \to b^{-}} \frac{f(x)}{g'(x)}.$$