MATH3210 - SPRING 2024 - SECTION 004

EXAM 2 - REVIEW SHEET

How to use this review sheet

On the exam or problems, you may use any of the definitions and theorems stated on the review sheet, unless you are explicitly asked to prove a theorem listed here. Any unnamed theorem you may use without citing. If you use a named theorem, cite that theorem by name when invoking its conclusions. Please don't hesitate to ask questions. I've proofread this, but typos may still lurk!

1. Continuity

Definition 1. If $D \subset \mathbb{R}$ is a domain (usually an interval, ray, or all of \mathbb{R}), and $f: D \rightarrow \mathbb{R}$ is a function, then:

- f is continuous at $x \in D$ if and only if for every $\varepsilon>0$, there exists some $\delta>0$ such that for every $y \in D$ such that $|y-x|<\delta,|f(y)-f(x)|<\varepsilon$,
- f is (pointwise) continuous (or just continuous) if and only if it is continuous at every $x \in D$, and
- f is uniformly continuous if and only if for every $\varepsilon>0$, there exists some $\delta>0$ such that for every $x, y \in D$ such that $|y-x|<\delta,|f(y)-f(x)|<\varepsilon$.

Theorem 1 (Extreme Value Theorem). If $I=[a, b]$ is closed and bounded, and $f: I \rightarrow \mathbb{R}$ is continuous, then f is bounded on I, and f achieves its minimum and maximum values (ie, there exists $c \in I$ such that $f(c)=\sup _{I} f(x)$, and similarly for the minimum value).

Theorem 2 (Intermediate Value Theorem). If $I=[a, b]$ is closed and bounded, $f: I \rightarrow \mathbb{R}$ is continuous, and y lies between $f(a)$ and $f(b)$, then there exists $c \in[a, b]$ such that $f(c)=y$.

Theorem 3. If $I=[a, b]$ and $f: I \rightarrow \mathbb{R}$ is strictly increasing and continuous, then $f(I)=[c, d]$ is a closed interval and there exists a continuous inverse $g:[c, d] \rightarrow \mathbb{R}$.

Theorem 4. If $I=[a, b]$ is a closed interval, any continuous function on I is uniformly continuous.
Theorem 5. If $f: D \rightarrow \mathbb{R}$ is a uniformly continuous function on a domain D, and $\left\{x_{n}\right\}$ is a Cauchy sequence in D, then $\left\{f\left(x_{n}\right)\right\}$ is a Cauchy sequence.

Definition 2. Let I be an interval with endpoints a and b, each of which may or may not belong to I. Then \bar{I}, the closure of I, is the closed interval $[a, b]$. If $f: I \rightarrow \mathbb{R}$ is a function, an extension of f to \bar{I} is a function $F: \bar{I} \rightarrow \mathbb{R}$ such that for all $x \in I, F(x)=f(x)$.

Theorem 6. If f is a continuous function on an interval I, then f is uniformly continuous on I if and only if it has a continuous extension to \bar{I}.

2. Limits

Definition 3. Let I be an interval, ray or the real line and $a \in I$ be an interior point.

- We say that $\lim _{x \rightarrow a} f(x)=L$ if and only if for every $\varepsilon>0$, there exists some $\delta>0$ such that if $0<|x-a|<\delta$, then $|f(x)-L|<\varepsilon$.
- If a is an interior point, right-hand endpoint, or ∞, we say that $\lim _{x \rightarrow a^{-}} f(x)=L$ if and only if for every $\varepsilon>0$, there exists some $m<a$ such that if $m<x<a,|f(x)-L|<\varepsilon$.
- If a is an interior point, left-hand endpoint, or $-\infty$, we say that $\lim _{x \rightarrow a^{+}} f(x)=L$ if and only if for every $\varepsilon>0$, there exists some $m>a$ such that if $a<x<m,|f(x)-L|<\varepsilon$.

Theorem 7. Let I be an interval and $a \in I$ be an interior point. Then

$$
\lim _{x \rightarrow a} f(x)=L \text { if and only if } \lim _{x \rightarrow a^{+}} f(x)=L=\lim _{x \rightarrow a^{-}} f(x)
$$

Theorem 8 (Limit Arithmetic Theorem). Assume all limits involved exist as real numbers \perp^{1}
(a) If $f(x)$ is the constant function with value c, then $\lim _{x \rightarrow a} f(x)=c$
(b) $\lim _{x \rightarrow a} c f(x)=c \lim _{x \rightarrow a} f(x)$
(c) $\lim _{x \rightarrow a}(f(x)+g(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
(d) $\lim _{x \rightarrow a} f(x) g(x)=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
(e) $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$, assuming that $\lim _{x \rightarrow a} g(x)$ exists.

3. Derivatives

Definition 4. If $f: I \rightarrow \mathbb{R}$ is a function defined on an interval, and $a \in I$ is an interior point, we say that f is differentiable at a if

$$
\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

exists. We denote the limit by $f^{\prime}(a)$. We say that f is differentiable on I if it is differentiable at every interior point of I.

Theorem 9. If f is differentiable at a, then it is continuous at a.
Theorem 10 (Derivative arithmetic theorem). Assume that f and g are functions which are differentiable at a. Then
(a) $(c f)^{\prime}(a)=c f^{\prime}(a)$
(b) $(f+g)^{\prime}(a)=f^{\prime}(a)+g^{\prime}(a)$
(c) $(f g)^{\prime}(a)=f^{\prime}(a) g(a)+f(a) g^{\prime}(a)$
(d) $\left(\frac{f}{g}\right)^{\prime}(a)=\frac{f^{\prime}(a) g(a)-f(a) g^{\prime}(a)}{g(a)^{2}}$, assuming that $g(a) \neq 0$

Theorem 11 (The Chain Rule). If g is differentiable at a, and f is differentiable at $b=g(a)$, then $f \circ g$ is differentiable at a, and

$$
(f \circ g)^{\prime}(a)=f^{\prime}(g(a)) \cdot g^{\prime}(a)
$$

Theorem 12. If $f: I \rightarrow \mathbb{R}$ is differentiable and $f^{\prime}(x)>0$ on I, then the inverse function g of f (provided by Theorem [3) is differentiable, and

$$
g^{\prime}(y)=\frac{1}{f^{\prime}(g(y))}
$$

[^0]Theorem 13. If f is a continuous function on a closed bounded interval, f achieves its maximum value at interior point c, and f is differentiable at c, then $f^{\prime}(c)=0$.

3.1. The mean value theorem and corollaries.

Theorem 14 (Mean Value Theorem). If $f:[a, b] \rightarrow \mathbb{R}$ is continuous and differentiable on its interior points, then there exists some $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Theorem 15. If f is a continuous function defined on an interval I, f is constant if and only if $f^{\prime}(x)=0$ for every interior point $x \in I$.

Corollary 16. If f and g are differentiable functions on an interval (a, b), and $f^{\prime}(x)=g^{\prime}(x)$ for all $x \in(a, b)$, then there exists some $c \in \mathbb{R}$ such that $f(x)=g(x)+c$ for all $x \in(a, b)$.

Theorem 17. Let f be differentiable on an open interval, ray or all of \mathbb{R}. If $f^{\prime}(x)$ is bounded above, then f is uniformly continuous.

3.2. L'Hopital's rule.

Theorem 18 (Cauchy Mean Value Theorem). Let $f, g:[a, b] \rightarrow \mathbb{R}$ be continuous functions which are differentiable at interior points. If $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$, then there exists $c \in(a, b)$ such that

$$
\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}
$$

Theorem 19 (L'Hopital's rule, interior point version). Let f and g be differentiable functions on an interval I, and $a \in I$ be such that $f(a)=g(a)=0$, but $g(x) \neq 0$ for any other $x \in I$. Then if $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists,

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

Theorem 20 (L'Hopital's rule, right-hand version). Let f and g be differentiable functions on an open interval, ray, or all of \mathbb{R}. Let b denote the right hand endpoint of the interval, or ∞ in the case of a right-facing ray or \mathbb{R}. Assume that $g(x)$ and $g^{\prime}(x)$ are both nonzero at every point of its domain, but either

$$
\lim _{x \rightarrow b^{-}} f(x)=\lim _{x \rightarrow b^{-}} g(x)=0 \quad \text { or } \quad \lim _{x \rightarrow b^{-}} f(x)=\lim _{x \rightarrow b^{-}} g(x)=\infty
$$

Then when $\lim _{x \rightarrow b^{-}} \frac{f^{\prime}(x)}{g^{\prime}(x)}$ exists,

$$
\lim _{x \rightarrow b^{-}} \frac{f(x)}{g(x)}=\lim _{x \rightarrow b^{-}} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

[^0]: ${ }^{1}$ Note that this is a nontrivial assumption! You need all limits to exist to apply this thoerem.

